Intergenerational Mobility of Education in Europe: Geographical Patterns and the Innovation Nexus

Sarah McNamara (ZEW) Guido Neidhöfer (ZEW & TAU) Patrick Lehnert (UZH)

WeLaR Webinar

McNamara/Neidhöfer/Lehnert

Intergenerational Mobility & Innovation

WeLaR Webinar

Motivation

Intergenerational Mobility is the degree to which children are able to move beyond their social origins -> a dynamic measure of inequality -> an indicator for inequality of opportunity

inequality of opportunity leads to inefficient human capital
⇒ accumulation (Barro, 1991; Hanushek & Woessmann, 2008)
⇒ allocation (Galor & Tsiddon, 1997; Hassler & Mora, 2000)

Inequality of opportunity and low intergenerational mobility lead to... *misallocation of talent* (Rodriguez Mora, 2009) and *Lost Einsteins* (Bell et al., 2019)

more limited: evidence how these inefficiencies translate to economic performance (e.g. Bandiera et al., 2017; Hsieh et al., 2019; Marrero and Rodriguez, 2013; Neidhöfer et al., 2024)

(Im)mobility: How persistent is socioeconomic status?

Neidhöfer/Ciaschi/Serrano/Gasparini (JOEG, 2024) show that intergenerational mobility significantly contributed to long-run growth and development in Latin America.

Here, we test this relationship for innovation in Europe.

Key Contributions of this study

- EUROPE-IGM-ATLAS [comparable IGM measures for (up to) 40 countries, 105 mesoregions (NUTS1), and 215 microregions (NUTS2) over time]
- we use cohort-contribution weights (following Neidhöfer et al., 2024) to transform cohort measures into time series indices (1985-2020)
- analyse relationship between intergenerational mobility of education and regional innovation

preview: evidence suggests mobility is **strongly and positively linked** to innovation (abstracting from the accumulation channel)

McNamara/Neidhöfer/Lehnert

Data

Data: EUROPE-IGM-ATLAS

- IGM measures European Social Survey (ESS)
 - indices based on own education, parental education, year born, gender, country, region
 - used to compute aggregate estimates at the regional level
 - individual data (i.e. migration background) allows subsample selection for robustness tests
 - total sample size: 276,379
- Profile Weights
 - effective labour over the lifecycle (Mason, A., Lee, R., & NTA Network, 2022)
 - (highly cited) patents over the lifecycle (Bell, A., Chetty, R., Jaravel, X., Petkova, N., & Van Reenen, J., 2016)

Data

Data: Application

- European Patent Office (EPO)
 - patent count, citation weighted patent count at the NUTS1, NUTS 2 and country level
 - panel data covers 1985-2016

• E-OBS

- summary statistics obtained from raster by taking within polygon averages
- cohort-specific initial conditions
- Daytime Satellite Imagery
 - improvement over *nightlights* for proxying economic activity at lower levels of aggregation
 - see Lehnert, Niederberger, Backes-Gellner & Bettinger (2023)
 - coverage 1985-2020 for most European regions at multiple spatial-scales

Empirical set-up

Generating EUROPE-IGM-ATLAS

- Step 1: measuring mobility
- Step 2: linking cohort measures to time series observations

Application

• Step 3: relationship between mobility and innovation

How to Measure Mobility

Intergenerational educational mobility is typically estimated via the following:

$$S_i^0 = \alpha + \beta S_i^P + \epsilon_i$$

- where S⁰ and S^P are the offspring and parents' levels of education, respectively, for family *i* (Black & Devereux, 2011)
- β measures the degree of intergenerational persistence
- higher β values indicate a stronger association between parents' and offspring's education, thus a lower degree of intergenerational mobility
- $\rho = \beta \frac{\sigma^P}{\sigma^0}$ indicates standardized persistence accounting for distributional differences

The Geography of Mobility

Results

Intergenerational Mobility of Education in Europe

Summary of results:

- increases in intergenerational mobility -> mostly driven by improvements in educational achievements among individuals from less-educated families
- fewer changes in rank across the educational spectrum
- regression coefficient of educational persistence decreased by 0.108 between oldest and youngest cohorts (on average)
- standardized persistence hardly changed (on average 0.004)
- changes in mobility, however, are not uniformly spatially distributed

Intergenerational Mobility and Educational Inequality

Persistence (im)mobility Educational Inequality coefficient of variation

Co. 1: 1940-59 | Co. 2: 1960-79 | Co. 3: 1980-99

*map illustrates terciles

The Geography of Mobility

Intergenerational Mobility and Educational Inequality

Persistence (im)mobility Educational Inequality coefficient of variation

Co. 1: 1940-59 | Co. 2: 1960-79 | Co. 3: 1980-99

*map illustrates terciles

Intergenerational Mobility and Educational Inequality

Persistence (im)mobility Educational Inequality coefficient of variation

Co. 1: 1940-59 | Co. 2: 1960-79 | Co. 3: 1980-99

*map illustrates terciles

Linking Cohort Measures to Current (Time Series) Observations

- to measure mobility *when it matters* we construct a panel (1985-2020)
- we adapt the procedure first proposed in Neidhöfer et al. (2024): for each index, weights are computed based on **relative average contribution to the economy** in a given year by cohort
- by construction, we eliminate risk of reverse causality since we look at the effect of *past* mobility on *contemporary* outcomes

Weighting Profiles

 weights based on age-participation profiles (labor force participation or patenting activity) -> aimed at capturing the economic contribution of a cohort

Weighting Profiles

Intergenerational Mobility & Innovation

WeLaR Webinar

Application: Intergenerational Mobility and Economic Performance

We want to test: higher intergenerational mobility \Rightarrow more (regional) innovation

level of regional aggregation: "NUTS 1 plus" \Rightarrow 148 regions for 1985-2020

Specification

$$Y_{rt} = \alpha + \delta Persistence_{rt} + \theta X_{rt-1} + \Psi I_{rt} + \tau_t + \gamma_r + \epsilon_{rt}$$

- Y_{rt} represents patents in region r in year t (asymptotic sine transformation)
- *Persistence_{rt}* is weighted measure(s) of intergenerational mobility (β_{rt})
- X is vector of contemporary controls for region characteristics t 1 (daytime satellite imagery)
- *I* vector of controls for cohort-specific characteristics: average years of education, coefficient of variation, cohort-specific initial conditions (E-OBS)
- fixed effects for year (τ) and region (γ) [in one specification: country-specific time trends]

Results

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
P (Slope Coefficient)	-4.193***	-2.629***	-2.887***	-2.725***	-2.574***	-1.443***	-1.061**
	(0.294)	(0.315)	(0.346)	(0.319)	(0.315)	(0.399)	(0.414)
Cohort Controls		х	х	х	х	х	х
Cohort-Specific Initial Conditions			х	х	x	х	х
Contemporary Controls				х	х	х	х
Year F.E.					х	х	
Reg F.E.						х	х
Country-Specific Time Trend							х
Observations	3859	3859	3859	3747	3747	3747	3747
Adjusted R-squared	0.0638	0.154	0.155	0.166	0.180	0.942	0.962
Elasticity	-1.870	-1.173	-1.288	-1.216	-1.148	-0.644	-0.473

What do the results mean?

- consistently negative and significant coefficient of P implies: lower levels of intergenerational persistence -> more innovation
- last row shows the elasticity: decrease of the slope coefficient by 0.1 (close to average change from the oldest to the youngest cohort), is associated with a positive change in the number of patents 4.7%-19%

Results

Conclusions

- New database of indices for intergenerational mobility in Europe
- Suggestive evidence that mobility can be a driver economic growth through innovation

Policy Implications

- no equity-efficiency trade-off
- interventions increasing equality of opportunity may lead to long-term efficiencies \Rightarrow even if policies have short-run inefficiencies
- regional structural transformation (in terms of innovation structure) may partly be driven by localized opportunities

Intergenerational Mobility of Education in Europe: Geographical Patterns and the Innovation Nexus

Sarah McNamara (ZEW) Guido Neidhöfer (ZEW & TAU) Patrick Lehnert (UZH)

Thank you for your attention Comments and questions are welcome!

Iterative Controls

- Cohort controls: average and coefficient of variation of years of education
- **Cohort-specific initial conditions**: summary indicator for historical precipitation, temperature, sea level pressure, relative humidity, wind speed, and global radiation associated with the respective cohorts
- **Contemporary controls**: include variables indicative of structural transformation and local development (Lehnert et al., 2023)