Local labour market resilience: the role of digitalisation and working from home

Sarra Ben Yahmed ¹ , Francesco Berlingieri ² and Eduard Brüll ¹

¹ZEW Mannheim

²European Commission, Joint Research Centre

November 2024

Motivation

- Digitalisation has spurred productivity growth & transformed the nature of work
- Crucial for socioeconomic resilience to crises
 (Bertsheck et al., 2019; Perri and Timmer, 2022; Reveiu et al., 2022)
- Spatial digital divide: disparities in regions' ability to resist and recover from a shock.
- The pandemic shock
 - Remote work widely adopted: 25% of the workforce worldwide use hybrid working arrangements, 45% of workers in jobs amenable to remote work.
 - Digital capital investments
 - 30% of German firms reported that they invested (more) in digital technologies because of the pandemic (Bellmann et al., 2021)
 - Necessary for remote work.
 - · Organisational flexibility, better cope with disruption of supply chains
 - Move business online

This paper

How did digital capital and remote work affect local employment responses to the crisis in Germany?

Impact of recessions on local labor markets

- Increase in inequality: Long-term declines in employment in more-affected regions (Yagan, 2019; Hershbein and Stuart, 2020, Furceri et al., 2020; Ma et al., 2020; Hershbein and Kahn, 2018)
- ⇒ Very few studies on what happened with the economic shock and recession due to Covid-19 pandemic.
- \Rightarrow Role of ICT and remote work for recovery from a shock

This paper

Introduction

How did digital capital and remote work affect local employment responses to the crisis in Germany?

Impact of recessions on local labor markets

- Covid-19 pandemic had unequal effects on employment across space in the short run (Stantcheva, 2021, Aum et al., 2020; Bauer and Weber, 2020; Böhme et al, 2020; Alipour, Fadinger and Schymik, 2020; Oikonomou et al, 2023)
- ⇒ Extend the time horizon : resistance phase and recovery phase.
- ⇒ Complementarity between digital capital and remote work.
- ⇒ Germany, a country with very different labour market institutions and safety nets than the U.S.
- ⇒ Look at both unemployment and short-time work (STW) Short-time work

Employment responses in Germany

- Employment data from German Federal Employment Agency
- STW spiked to 18% in April 2020.
- Ranging from 9 to almost 38% across local labour markets.
- Unemployment rate just below 6% in summer 2020

 (an increase of 1.2 percentage points relative to summer 2019).
- Changes in unemployment rates differed across regions by up to 2.5 percentage points.

Digital capital potential

- Local ICT capital endowment
 - No information on actual ICT capital at the local level
 - given the technological frontier, variation in ICT capital within industry x region likely endogenous to local firms' characteristics.

Local ICT capital potential

- ICT capital at the industry level: 40 industries in 2019, EU Klems
- Index at the local level based on industry employment composition

$$K_{ICT,I} = \sum_{i=1}^{I} \frac{E_{i,I}}{E_I} \times \frac{K_{ICT,i}}{E_i}$$

Variation comes from

- local differences in industry employment structure just before the pandemic.
- different average ICT-intensity across industries before the pandemic
- ⇒ Local specialisation in ICT-intensive industries

Information and Communication Capital Exposure

Information and communication capital per worker in 2019

working from home potential

- Local working from home usage
 - No information on actual ICT capital at the detailed local level in 2020 ...
 - Given the technological frontier, adoption of WfH arrangements within jobs x region likely endogenous to local characteristics.

Local working from home potential

- At occupational level 2018, BiBB/BauA Employment Survey
- Different indexes based on pre-crisis usage or teleworkable tasks
- Index at the level of local labour markets based on occupational composition

$$WfH_r = \sum_{o=1}^{O} \frac{E_{o,r}}{E_{\text{total},r}} \times \frac{WfH_o}{E_{o,\text{national}}}$$

Variation comes from

- local differences in occupation structure just before the pandemic.
- different average WfH feasibility across occupations
- ⇒ Local specialisation in jobs amenable to WfH

Working from Home frequency

Share of frequent/always teleworkers in pre-period

Identification strategy

- Difference-in-Differences with a continuous treatment and one shock
- Intensity of the treatment depends on a region's digital capital potential and working from home potential.
- Dose-response framework: as the intensity increases, the effect size should grow.
- Dichotomize into "high" and "low" groups or present average linear effects are intuitive and parsimonious.
- Exploiting fully the continuous measure is more informative.
- Examine for non-monotonicities in the policy exposure measure.
- We do not need random assignment of digitalisation intensity.

Identifying assumption $\#\ 1$

i Strong parallel trends assumption

Employment of regions with different digitalisation intensity would have trended similarly in the absence of pandemic.

Empirically show the pre-trends at all levels of treatment.

Identifying assumption # 2

- ii Conditional independence assumption Conditionally on covariates, no unobserved selection into specific levels of digitalisation potential.
- Need exogeneity of the local employment shares conditional on covariates.
- Control for systematic differences across regions using a propensity score weighting procedure
- Non-parametric covariate balancing generalised propensity score (npCBGPS) methodology by Fong et al. (2018)
- Estimate the effect of digitalisation on a pseudo-population of regions without relationship between local digital potential and other observable characteristics.

Covariates

iii Stable unit treatment value assumption

The level of digitalisation in one region should not have employment effects in another region.

- Local labour markets defintion minimises commuting across local labour markets
- Large migration or capital transfer would only happen over a longer time horizon in Germany
- Stawarz et al. (2022) even document a drop in inter-county migration in 2020.

Event-study framework

$$\text{STW-RATE}_{lt} = \sum_{t=1, t \neq 0}^{T} \beta_t \text{DIGITAL POTENTIAL}_l \times \text{TIME}_t + \sum_{t=1, t \neq 0}^{T} \gamma_t \text{TIME}_t + \alpha_l + \varepsilon_{lt}.$$

Digital capital reduced short-time work

More on pre-trends

(2)

(5)

Digital capital reduced short-time work

(1)

Digital capital potential

(4)

	(1)	(2)	(3)	(4)	(5)
Treatment ×	Linear	Over 10th p.	Over 20th p.	Over 40th p.	Over Median
Before Feb 2020	-0.094	0.133	-0.008	0.029	-0.060
	(0.156)	(0.204)	(0.098)	(0.094)	(0.106)
March to June 2020	_1.147**	-3.924* [*] **	-ì.901***	-ì.753***	_1.267**
	(0.469)	(0.773)	(0.661)	(0.543)	(0.623)
July to October 2020	-0.245	-2.507***	-1.484**	_0.707*	-0.334
	(0.429)	(0.609)	(0.581)	(0.416)	(0.400)
Nov 2020 то Feb 2021	0.016	-0.629	_`0.659**	-0.480*	_0.752**
	(0.265)	(0.527)	(0.330)	(0.322)	(0.366)
March to June 2021	0.026	-0.311	-0.587*	-0.354	-0.733**
	(0.303)	(0.415)	(0.346)	(0.275)	(0.333)
Time-fixed effects	YES	YES	YES	YES	YES
Region-fixed effects	YES	YES	YES	YES	YES
N	5397	5397	5397	5397	5397
Adjusted R^2	0.75	0.75	0.75	0.75	0.75

Ben Yahmed, Berlingieri and Brüll

Digital capital potential

- Digital capital potential is more exogneous than actual digital capital
- No variation in digital capital within detailed industry across local labour markets, likely endogenous to other regional characteristics.
- ▶ Depends on industry mix of a region, conditional on observables covariates
- Additional IV results for digital capital
 - Local share of jobs intensive in routine tasks in 1979 that would be replaced by computers later on: "computerizable tasks'."
 - Autor et al. (2003) use it for the US to study how the computerization of routine tasks affected labour demand.
 - ► Local share of computers in 1979
 - BiBB BAuA Employment survey on Qualification and Working Conditions in Germany

Historical IV for digital capital potential

	(1)	(2)	(3)
SECOND STAGE: LINEAR EFFECT			
Before March 2020	-0.057***	-0.064***	-0.068***
March to June 2020	(0.013) -1.263***	(0.012) -1.538***	(0.012) -1.663***
July to October 2020	(0.392) -0.584***	(0.363) -0.823***	(0.36) -0.932***
Nov 2020 to Feb 2021	(0.212) -0.235	(0.195) -0.184	(0.193) -0.16
March to June 2021	(0.182) 0.051 (0.169)	(0.168) 0.078 (0.157)	(0.167) 0.09 (0.156)
FIRST STAGE			
Constant	2.873***	1.464**	0.944
Computer use in 1979	(0.339) 0.526*** (0.065)	(0.459)	(0.628) -0.283 (0.233)
Share of routine employment in 1979	(0.303)	0.567*** (0.063)	0.839*** (0.233)
First stage N	184	184	184
First stage R ² F-statistics	0.27 9.88	0.31 12.22	0.32 6.27

Ben Yahmed, Berlingieri and Brüll

Channels of impact

- Possibility to work remotely
- Organisational flexibility and faster adaptation
 - faster sharing of information
 - improve decision-making within organisations
 - Reshaping supply chains
- Move (part) business online

WfH potential reduced short-time

More on pre-trends

Working from home reduced short-time work

Working from home potential

	(1)	(2)	(3)	(4)	(5)
Treatment ×	Linear	Over 10th p.	Over 20th p.	Over 40th p.	Over Medi
Before Feb 2020	-0.018	-0.056	0.052	-0.011	-0.058
March to June 2020	(0.052) -1.189***	(0.130) $-1.261*$	(0.091) $-1.151**$	(0.069) -0.998	(0.083) -0.484
July to December 2020	(0.441) -0.567**	(0.762) -0.242	$(0.564) \\ -0.251$	$(0.694) \\ -0.146$	(0.635) -0.096
January to June 2021	(0.267) -0.112	(0.533) 0.325	(0.384) -0.269	(0.348) -0.015	(0.380) 0.348
Time-fixed effects	(0.277) YES	(0.543) YES	(0.626) YES	(0.450) YES	(0.377) YES
Region-fixed effects	YES	YES	YES	YES	YES
N Adjusted R ²	5397 0.75	5397 0.75	5397 0.75	5397 0.75	5397 0.75

Ben Yahmed, Berlingieri and Brüll

Digital capital and WfH potential together

Ben Yahmed, Berlingieri and Brüll

Digital capital potential predicts actual working from home

Ben Yahmed, Berlingieri and Brüll ZEW

Take-away

Digital capital was

- essential for employment during the pandemic
- necessary for working from home to help reduce short-time work enabled to save jobs
- smoothed the employment shock beyond the ability to work remotely.
- Other likely channels similar to the ones linking ICT and productivity.
- Effect in the short/medium run: 8 months after outbreak
- Effect diminished when labour markets started to recover.

Discussion

- Spatial digital divide brought further employment inequalities with the pandemic but only in the short to medium run.
- Short-time work likely powerful in cushoning negative shock in local labour markets with low digital capital.
- Consistent with literature on STW (Giupponi et al., 2022; Kopp and Siegenthaler, 2021, Giupponi and Landais, 2022)
- No higner unemeployment in low digital local labour markets.
- Job transitions out of hardly hit sectors (Arntz et al., 2023)

Discussion

- No persistent effect of digitalisation after a year
- Adoption of ICT during the pandemic & heterogeneity across space.
- Firm heterogeneity in ICT adoption (Gathmann et al., 2023, Barth et al., 2022, Rückert et al., 2020)
- Regional data on digital capital: regional convergence during/after the pandemic?
- Firm data: how the dispersion in firms' adjustments will affect spatial inequality?

Short time work schemes STW

- Shield workers from job loss and firms from job match destruction.
- Instead of firing employees, firms could apply for STW and reduce their employees' hours.
- The government compensate employees for the wage loss due to the involuntary decrease in working hours.
- Germany: if 10% or more of a firm's workforce, including temporary employees, were affected by a reduction in hours.
- for up to 24 months.

Short-time work across local labour markets

Unemployment rte across local labour markets

| Quartile of average initial increase in short-time work March/April 2020 | 1. Quartile | 2. Quartile | 3. Quartile | 4. Quartile | 6.7% to 10.4% | 10.4% to 12.5% | 12.6% to 14.5% | 14.6% to 29.4% |

Identification strategy

Sample
- Unweighted - npCBPS Weighted

Back

Back

Weight distribution for the Digital capital exposure

Weight distribution for the Working from Home frequency

Pre-trends

Ben Yahmed, Berlingieri and Brüll

Pre-trends

Ben Yahmed, Berlingieri and Brüll

ZEW